included in Appendix A: Stormwater, and the results summarized in Table 2.1.H: Comparison of Present and Future Runoff, University Avenue.

<table>
<thead>
<tr>
<th>Junction Node</th>
<th>Contributing Sub-watersheds</th>
<th>Design Storm (Type II – 24 hr)</th>
<th>Present Condition Peak Rate (cfs)</th>
<th>Future Condition Peak Rate (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UA-1, UA-2, WC-2</td>
<td>2-year</td>
<td>55</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-year</td>
<td>102</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-year</td>
<td>143</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-year</td>
<td>168</td>
<td>185</td>
</tr>
<tr>
<td>2</td>
<td>UA-1, UA-2, UA-3, WC-2</td>
<td>2-year</td>
<td>72</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-year</td>
<td>136</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-year</td>
<td>194</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100-year</td>
<td>230</td>
<td>245</td>
</tr>
</tbody>
</table>

Based on field observations the majority of the existing storm sewer piping is shallow in depth and generally parallels the centerline slope of University Avenue. The largest diameter recorded is 24 inches. Given these parameters the theoretical full-flow capacity of the existing 24-inch storm sewer between junction node one and two is approximately 42 cfs. Both present and future watershed conditions significantly exceed this capacity for all of the rainfall events evaluated. Comparatively, a pipe capable of discharging runoff from the ten-year and 100-year events would have to be minimally 30 and 36 inches in diameter, respectively.

An identified negative impact on stormwater quantity is listed below:

- Analysis of the University Avenue system under present watershed conditions suggests the existing piping configuration (i.e. diameters and materials) is not capable of discharging flows from the two-year design storm. Surcharging of storm manholes or drain inlets, although not specifically identified by the city, must occur during the less frequent rainfall events. Completion of the proposed parking lot will exacerbate the current hydraulic condition.

Stormwater Quality:

Depending on size, age and vehicle turnover, parking lots generate a diverse pollutant load in stormwater runoff. Generally, parking lot runoff contains concentrations of trace metals (i.e. cadmium, copper, lead and zinc) greater than the national stormwater mean in addition to oil and grease. The proposed use of the University Avenue site is primarily for long-term residential parking. Runoff with high concentrations of hydrocarbons, from vehicles leaking oil and grease, can be expected. During winter months the use of de-icing salts and sand greatly increases the concentrations of chlorides and sediment in the snowmelt runoff.

Identified negative impacts to stormwater quality are listed below:

- The University Avenue surface parking will replace existing parking to be removed from west campus. Although the overall impact should be no greater than currently exists, because runoff will be redistributed, the pollutant loading to Cascadilla Creek, primarily in the form of trace metals and hydrocarbons, will increase. A proportionate increase in water quality to Fall Creek should occur.
c. Mitigation Measures for Stormwater

Stormwater Quantity:
If the increases in stormwater discharges from UA-2 were considered significant, it would become necessary to construct above or below grade storage volume with controlled discharge to attenuate peak flows to present rates. This site-specific measure does not improve, but neither impairs, the downstream hydraulic condition. Alternatively, the existing University Avenue storm sewer system beginning at the Cornell Avenue intersection could be re-constructed with adequately sized pipe.

Stormwater Quality:
The University Avenue parking lot project will be required by New York State Department of Environmental Conservation to obtain a SPDES permit for stormwater discharge. The permit can require the construction of stormwater management practices aimed at reducing significant levels of pollutants commonly found in parking lot runoff. Such practices include ponds, wetlands, infiltration, filters and open channels. An initial list of filter techniques deemed suitable for the site include:

- Surface and Underground Sand Filters
- Bioretention

Design and construction of these filter systems in accordance with the NYSDEC Stormwater Management Design Manual will fulfill the permit requirements with respect to water quality. Construction of the filtering system to treat the stormwater run-off from the University Avenue lot will result in a reduction of total suspended solids and pollutants entering the storm drainage system. Because run-off from the west campus lot is not currently treated, this project will result in improved water quality being discharged to Cascadilla Creek Gorge and is a positive impact of the project. The final design of the storm drainage system will be developed and reviewed as part of the City’s Site Development Plan Review Process.

d. Unavoidable Impacts to Stormwater
While possible to attenuate peak rates of runoff with on-site practices, the total increase in volume of runoff will be unavoidable.
and vehicular circulation facilities. These new plantings will enhance the overall living environment for residents of the new houses and mitigate the removal of existing vegetation.

Many of the new landscape plantings will be comprised of native plant species and will provide habitat for animal species in the area. Trees to be planted as part of the proposed project will include species which are long-lived and which will, in time, achieve the size and stature similar to the original trees.

d. Unavoidable Impacts
Unavoidable impacts with will be manifested in the visual difference between an existing landscape dominated by relatively mature trees, and a landscape comprised of younger, substantially smaller trees.

2.2.2 University Avenue Site Vegetation

a. Existing Vegetation at University Avenue Site
Volunteer brush and trees cover much of the University Avenue site. The site was previously the main lawn of the former Treman houses to the east. A landscape plan was prepared for the Tremans in the early 1900’s. Photographs from the 1930’s show the site as being a lawn with some scattered shade trees (see section 2.4.1.2, Historical Resources, University Avenue Site). Sometime in the later 1900’s, it ceased to be maintained as a lawn, and invasive species began to abundantly reproduce on the site. Cornell Plantations has identified the site as Redbud Woods, “…an excellent place to consider the impacts of human activity, horticulture, and the effects of invasive plants on native vegetation.” Appendix E: Vegetation, includes Cornell Plantation’s description of the vegetation on the site.

Predominant species of trees include black walnut, redbud and tree of heaven. Other, less numerous tree species include shagbark hickory, mulberry, maple, purple beech, white pine, oak, American linden, box elder and hackberry. Beneath the canopy grows a mixture of scrub species made up of virginia creeper, sumac, elderberry, honeysuckle, privet, wisteria and multiflora rose. The site shows relatively young growth and more than 50% of the canopy trees in this area are young black walnuts, 8-10” dbh.

There are a few specimen trees of age, probably remnants of the Treman gardens. These include a 30”+dbh pignut hickory, a 30”+dbh black walnut, a 24-30” purple beech, a 24-30” yellow oak, and a 30”+ oak. These specimens have served as parent trees, re-seeding the site and producing much of the volunteer growth found.

Much of the vegetation on site is non-native and invasive. Native species include American linden, redbud and black walnut. Two of the species are at the northern edge of their range: hackberry (locally scarce), and the yellow oak, which was no doubt planted, is locally rare. Nearly all of the undergrowth is invasive species, common to disturbed or abandoned sites. There are a few plants found in this area that are remnants of the Treman gardens. Small sections of snowdrops, wisteria, daylilies, lily of the valley and other patches of ornamentals dot the site, nearly buried in undergrowth.

Figure 2.2.B illustrates the existing vegetation on the University Avenue site and documents vegetation to be removed.
Figure 2.2.B (Adden.):
Existing Vegetation
University Avenue

Vegetation in this area are to be removed.
Continuous band of vegetation to remain

TREE SYMBOL KEY:
dbh: diameter at breast height

- Voluntary tree/shrub growth
- 11"-18" dbh
- 19"-24" dbh
- 25"-30" dbh
- 31" dbh or greater

TREES LARGER THAN 12" TRUNK DIAMETER TO BE REMOVED:

<table>
<thead>
<tr>
<th>Map Key</th>
<th>Species</th>
<th>Size</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apple</td>
<td>14"</td>
<td>90% Dead</td>
</tr>
<tr>
<td>2</td>
<td>Hickory</td>
<td>30"</td>
<td>Good-Excellent</td>
</tr>
<tr>
<td>3</td>
<td>Yellow Oak</td>
<td>24"</td>
<td>Severe Decline/ 40% Dead</td>
</tr>
<tr>
<td>4</td>
<td>Hickory</td>
<td>Clump- 3 10" Stems</td>
<td>Dead</td>
</tr>
<tr>
<td>5</td>
<td>Walnut</td>
<td>14"</td>
<td>Good-Excellent</td>
</tr>
<tr>
<td>6</td>
<td>Walnut</td>
<td>14"</td>
<td>Good-Excellent</td>
</tr>
</tbody>
</table>

Note: Almost all of the trees 12" and smaller that will be removed are Black Walnuts and Redbuds.
The project will require the demolition of the six Class Halls and the Noyes Community Center. Because these buildings are less than fifty years old and lack architectural distinction, they do not constitute historically significant resources. The removal of the buildings will restore the visual axes centered on Baker Tower and the War Memorial arcade. This can be considered a positive impact of the project.

The scale of the new residence halls will be somewhat larger than the existing Class Halls. Despite the increase in scale, careful distribution of the mass of the buildings will offset the increase in building height. The regular rhythm of alternating narrow buildings and open lawns proposed along Stewart Avenue is an improvement over the current loading dock and fortress-like massing of the existing buildings. The design of the project takes advantage of the site’s slope, keeping the tallest buildings at the lowest part of the site, thus minimizing the impact of the project on the sight lines of the existing Baker/War Memorial complex. The profile of the new buildings will be significantly lower than the towers of the Baker/War Memorial complex and the ridge line of the new buildings will not exceed the horizontal datum established by the gable roofs of Lyon and McFadden halls.

The project will be visible within numerous historic viewsheds on campus and throughout the city of Ithaca. The use of compatible architectural forms, materials, roof architecture, and building massing will minimize the projects impact on these views. Opening spaces along the Baker Tower and War Memorial axes will restore views into and through the site which have been lost. This can be considered a positive impact of the project.

2.4.1.2 University Avenue Site Historic Resources

a. Existing Historic Resources on the University Avenue Site
The University Avenue surface parking facility is proposed for a 10-1/2-acre property bounded on the west and north by University Avenue, on the east by Stewart Avenue and on the south by Llenroc (now Delta Phi), the mid-nineteenth-century estate of Ezra Cornell.

The project involves the construction of a 195-car asphalt parking lot on the western section of the property adjacent to University Avenue. Occupying approximately 2-1/2 acres (1.7 acres of asphalt), the lot is to be located at the base of the common sloping lawn overlooked by the historic Robert H. Treman house (Kahin Center), the Elizabeth Treman Van Cleef house (660 Stewart Avenue), and a student cooperative residence, Von Cramm.

Treman Site
The proposed University Avenue surface parking facility is to be constructed on the western portion of the former Treman family property, adjacent to University Avenue. The site includes three existing buildings: the Italian Renaissance style Elizabeth Treman Van Cleef house, the Tudor Revival style Robert H. Treman House, and the Tudor style Von Cramm, a student housing cooperative.

The two remaining former Treman houses are outstanding examples of early twentieth-century domestic architecture. Both are the work of William H. Miller, Ithaca’s most renowned designer of the period. Although altered to accommodate institutional use, the houses retain a high level of integrity and an outstanding level of craftsmanship and detail. The houses have historic significance for their long association with the Treman family, one of Ithaca’s most prominent families during the nineteenth and early twentieth centuries. Robert H. Treman is an Ithaca figure notable for his role as a local business leader and for his gifts of land which established an outstanding
collection of State Parks in Tompkins County.

Von Cramm, built in the late 1950s on the site of the third Treman house which burned, is neither architecturally distinguished nor historically significant.

The Treman property was developed according to a landscape design prepared by Boston landscape architect Warren Manning. The primary landscape elements of Manning’s plan, including grass terraces, a stone retaining wall, a winding carriage drive, and a central open lawn, survive. These features contribute to the historic character of the two remaining historic Treman houses. The grounds have suffered some loss of integrity due to the installation of parking, the disappearance of the Japanese garden, obstruction of the view of the valley from secondary tree growth, the general unchecked growth of brush and trees along all perimeters of the property, and the loss of the third Treman House. The neighboring Dutch Colonial Alan H. Treman House (115 Llenroc Court), built by Robert H. Treman for his son, contributes to the architectural and historic significance of the Treman complex.

Figure 2.4.B shows a photograph of the Treman complex and landscaping in the 1930’s.

Llenroc

South of the Treman site is Llenroc, a large stone Gothic Revival house set on a spacious open hillside site, overlooking Ithaca. The house is listed on the National Register of Historic Places. Llenroc is historically significant as the last extant building in Tompkins County associated with the personal life of Ezra Cornell, inventor, industrialist, philanthropist and co-founder of Cornell University. Designed jointly by the Albany-based architecture firms of Nichols and Brown and Thomas Fuller, the house is significant as Ithaca’s finest Gothic Revival residence. The house is distinguished by outstanding stone carving and craftsmanship. Although the original nine-acre site has been subdivided, the building’s setting, primary site features, and expansive view remain intact. Used as a fraternity since 1911, the building retains a high level of architectural integrity in the primary interior rooms of the first floor.

University Avenue

Two early twentieth-century houses are located across University Avenue, north of the proposed parking site. Both houses have suffered a significant loss of architectural integrity. The Kappa Sigma fraternity house, designed by William H. Miller, is one of the more sophisticated examples of Cornell’s group of early twentieth-century fraternity houses designed in the Italian Renaissance style. The appearance of the house’s primary facade has been compromised by the incompatible enclosure of the first floor porch. The house at 614 University Avenue is a late example of the Shingle Style. Converted into apartments, changes to the house’s fenestration and other features have compromised its historic appearance.

Directly opposite the proposed lot, the opposite side of University Avenue is lined with an eclectic group of late nineteenth-century residences. Most of the houses have been subdivided into rental apartments and have suffered a loss of integrity due to alterations. There are two single family homes located on the west side of University Avenue (320 University Avenue and 410 University Avenue). 512 University Avenue is a two family house, and 510 is a three family house.

b. Analysis of Impacts to Historic Resources from the Proposed University Avenue Surface Parking

This section of the historic resources evaluation analyzes the effects of the project on the adjacent
2.11 Community Character at University Avenue Parking Lot

Existing Community Character: The neighborhood surrounding the proposed University Avenue parking site is comprised of a mix of apartment buildings, Greek houses, student cooperatives, an academic facility, multi-family housing and two single-family residences. The site is located two blocks from the central campus and so housing is predominately student housing, although there is one single-family residence across from the proposed project and a second single-family residence further south on University Avenue. Ravenwood apartments, an approximately 46-unit apartment building, and its associated surface parking lot is located directly across the street to the west of the project. South of Ravenwood, also directly across from the proposed parking site are eight residential scale structures. Of these eight structures, one is a single-family house and seven are multi-family structures or apartments. Across the street to the north of the site is the Kappa Sigma Fraternity, 614 University Avenue which is a residential-scale building housing apartments, and the Belleayre Apartment building, which largely houses graduate students. To the east is the Von Cramm Fraternity, student cooperative housing at 660 Stewart Avenue, and the Kahin Center, an Asian studies academic facility. Delta Phi fraternity is located to the south of the site. Figure 2.11.A *Community Character* illustrates housing types in the vicinity of the project.

Impacts to Existing Community Character: As is noted above, the project is located near the central campus and so the community character is predominately multi-family student residential. Ravenwood apartments and the multi-family buildings to the north and east of the site have associated surface parking lots. The proposed project is not inconsistent with the predominately multi-family housing character of the area. Two-family and single family houses also exist on University Avenue. Several characteristics of the design of the project are intended to minimize its visibility from adjacent properties and will serve to mitigate its impact on structures along University Avenue. These include maintaining a continuous band of vegetation between the west edge of the parking lot and University Avenue, terracing the lot so that only portions of it are visible from any viewpoint, substantial new landscape plantings to screen the parking lot and block car headlights, and sharp cutoff light fixtures to minimize light trespass.

2.12 Security at University Avenue Parking Lot

Security is an important consideration in the design of the University Avenue parking lot. Security will be achieved through a combination of appropriate light levels, maintaining visibility in and out of the parking lot at appropriate locations, and installation of blue light security phones. In 1999, the university contracted with a recognized lighting and safety expert, Lighting Design, Inc. to develop lighting guidelines for the university. The recommended guidelines are based on criteria set forth by the Illuminating Engineering Society of North America (IESNA). The recommendations took into consideration glare, safety and security, light trespass and pollution, psychological aspects and many other issues. The recommendations will be established as the Cornell Standards within the year. Although not yet formally adopted, the guidelines are being utilized in the design of the University Avenue parking lot lighting.

According to the guidelines, the proposed University Avenue parking site is considered an area of Intermediate Activity. Mounting heights for fixtures in the parking lot should be at 25 to 30 feet. Each luminaire will use a 400 watt Metal Halide lamp producing approximately 25,000 lumens. Dark spots will be minimized by maintaining light levels on all areas of pavement of the parking lot at 0.6 footcandles. Light fixtures will be specified with optical characteristics that place light only where it is needed, minimizing light trespass. Light fixtures along the carriage path will be lower-
2. POTENTIAL SIGNIFICANT IMPACTS

Figure 2.11.A (Adden.):
Community Character
15’ high. Light levels of approximately 0.6 footcandles will also be maintained along the carriage path.

Existing streetlights on University Avenue provide high light levels on the street. The light level from existing streetlights on the properties on the west side of University Avenue is higher than what will be generated from the new parking lot. The University Avenue street lighting will be visible from the parking lot and will provide an added sense of security since the surrounding area will not be dark. Since these fixtures are not sharp cut-off fixtures, light trespass from the street to the parking lot is anticipated and is considered positive from a security standpoint.

Landscaping will be an important consideration. Screening the lot from views on University Avenue is a priority. Therefore, landscaping of the parking lot along the east edge towards campus will be done so as to maintain views in and out of the lot to avoid a site that is enclosed on all sides.

Blue light telephones will be installed in the lot and along the reconstructed carriage path so that a phone is visible from all locations. Site lighting, appropriate blue light locations and landscape plans from a security standpoint will be determined in conjunction with Cornell Police.

2.13 Noise at University Avenue Parking Lot

The majority of parkers at the University Avenue parking lot will be students who store their cars for occasional use. The design of the lot will mitigate noise impacts to residences along University Avenue. The entrance/exit to the lot is located on the north end of the site. Traffic entering and exiting at this location should not be audible to residences on the west side of the site due to the distance. The lot will be at a higher elevation than the residences along the west side of University Avenue. The lower parking terrace is approximately fifteen feet higher, and the upper terrace is approximately twenty-five feet higher than residences on the west side of University Avenue. Substantial vegetation will be planted between the lot and University Avenue. The location of the parking lot entrance, the grade differential between the lot and University Avenue, the terracing that interrupts the expanse of the lot, and landscape buffer plantings will all combine to mitigate noise. Also, existing traffic on University Avenue creates a level of ambient noise that is expected to exceed and muffle most noise from the parking lot.
3.5 Construction Impacts to Stormwater

a. Construction Impacts to Stormwater:
Sediment in runoff from the construction sites can impact downstream water quality if left unmitigated.

Portions of west campus ultimately drain to and could impact Fall Creek. Other portions of west campus drain to and could impact Cascadilla Creek. Temporary controls employed during construction must focus on controlling erosion of exposed soils and minimizing discharge of dewatering practices directly into storm sewer systems.

The University Avenue site drains to and can impact Cascadilla Creek. Temporary stormwater management practices employed during construction must control erosion of exposed soils.

b. Mitigation Measures for Construction Impacts to Stormwater:
For all phases of construction on both sites, the following temporary practices will be employed as needed:

- Install silt fence adjacent to the downhill edge of any grading and parallel with the contours.
- Provide protection around drainage inlets using rock check dams.
- Temporary seeding and mulching of disturbed areas or topsoil stockpiles should be encouraged if soils will remain exposed longer than 14 days.
- Install sediment traps prior to initiating significant earthwork and maintain throughout the construction period until all soils are stabilized.
- Direct all sediment-laden water from trench and pit excavations to a sediment basin.
- Install crushed stone tracking pads at all construction site entrances.
- Clean adjacent streets soiled by construction vehicles on a regular basis.
- Depending on equipment available to any given contractor, techniques for street cleaning can include vacuum sweeping equipment, washing down the street, or contracting with companies that have street cleaning equipment.

Construction documents for each phase of the project should include an erosion and sediment control plan prepared in accordance with New York State "Guidelines for Urban Erosion & Sediment Control".

c. Unavoidable Construction Impacts to Stormwater
Construction vehicles will tend to track some soil, either as dust or mud, onto adjacent streets and it will eventually be flushed into the storm sewer. Deposition of airborne dust on surrounding impervious surfaces will also flush into the storm sewers.
3.6 Construction Impacts to Air Quality

a. Construction Impacts to Air Quality:
Construction of the University Avenue surface parking lot will take approximately three months to complete. Clearing, earthwork, and placement of the gravel base will create the potential for increased dirt and dust particles in the air. This portion of the work will last approximately six weeks. Placement of pavements, curbing, walkways, lighting and landscaping will take another six weeks. After this three month period, no additional disturbance to air quality will occur from the University Avenue site. The intention is to fully complete work on the University Avenue site, including landscape screening and establishment of lawns before turning it over to construction workers. This minimizes the length of time the site will be disrupted.

Work on the west campus site will be phased. Ground clearing, excavation, building demolition and surface disturbance resulting from movement of materials and machinery will result in increased amounts of total suspended particulates on and near the site. Each phase will be completed, including landscaping and establishment of lawns, prior to beginning work on subsequent phases so as to minimize the area being impacted at any one time.

b. Mitigation Measures for Construction Impacts to Air Quality:
The first construction activity will be to pave the University Avenue surface parking lot. This will provide a paved surface for contractor vehicle parking so as to minimize dust. The University Avenue surface lot will be for contractor’s personal vehicles, not for construction equipment.

Dust-control measures during construction of the WCRI will include:

- wetting down the site on a regular basis to minimize dust;
- maintaining crushed stone tracking pads at all entrances to the construction site;
- reseeding disturbed areas quickly so as to minimize bare exposed soils on site;
- keeping the roads clear of mud and debris;
- requiring trucks be covered; and
- prohibiting the burning of debris on site.

Asbestos in the existing Noyes Center will be remediated prior to demolition, and is discussed in section 3.2.

c. Unavoidable Construction Impacts to Air Quality:
Some increase in TSP is an unavoidable aspect of construction activity. The amount of construction generated dust created depends on several factors including soil conditions, moisture content, amount of time soils are exposed to the wind and sun, weather-related factors and construction practices.
3.7 Construction Impacts to Noise

a. Construction Impacts to Noise
Noise as a result of normal construction activities is inevitable and will impact the west campus area for the duration of the construction. There will be a limited amount of controlled blasting. Noise levels resulting from construction will vary depending on location and the stage of the project.

Noise levels will be typical for a project of this size, phase and scope. The biggest impact of construction noise will be on students and staff who reside on west campus. Nearby residences on Stewart Avenue and University Avenue and the Greek houses on west campus can be expected to be impacted by construction noise at some phase during the construction.

The project will comply with the City of Ithaca noise ordinance.

b. Mitigation Measures for Construction Impacts to Noise
Construction noise will be muffled to the extent possible and will not exceed levels allowed by law. Although local codes allow construction activity daily from 7:30 am to 10:00 pm, some exterior noise-generating construction activities will be restricted during certain times in order to minimize impact on the community. For example, noise-producing construction activities may be restricted during exams.

The university will establish a plan for communicating with nearby residents to alert them of upcoming construction activities and work with NYSEG and other local utilities as necessary. The university will work closely with the contractor to implement Best Management Practices (BMP) for noise reduction to the extent possible. BMP Mitigation measures listed by New York State Department of Environmental Conservation that will be utilized to the extent possible include:

- source reduction (mufflers, dampeners, electric motors instead of air compressors);
- duration reductions (limiting days, hours, times);
- put equipment inside buildings to dampen noise

The City of Ithaca Planning Board typically restricts construction that generates noise to the hours of 7:00 AM – 7:00 PM.

c. Unavoidable Construction Impacts to Noise
Construction noise is an unavoidable but temporary negative result of this project. Noise as a result of normal construction activities is inevitable and will impact the west campus area for the duration of the construction.
The following sections address traffic and parking impacts related to the construction sequencing for the West Campus Residential Initiative Project and a concurrent but separate project, to build a proposed garage between South Avenue and Edgemoor Lane. A separate DEIS will be prepared to address impacts of the garage. The construction parking and traffic analysis described in the following sections addresses the construction vehicular traffic from both the proposed garage and the WCRI so that the system can be evaluated as a whole. Section 3.8.1 describes construction impacts to parking. Section 3.8.2 addresses impacts related to contractor and construction vehicles.

3.8.1 Construction Impacts to Parking

a. Construction Impacts to Parking
During construction of the WCRI, the University Avenue parking lot will be used primarily for contractor parking. During construction phases where construction worker parking does not fully utilize the capacity of the lot, the remainder of the spaces will be allocated for west campus students. During certain construction phases, spaces in a proposed parking garage will be allocated to accommodate displaced west campus parkers. Surface parking will also be lost due to the construction of the parking garage. Therefore, the peak construction worker vehicle demand occurs during phase one.

Use of the proposed garage for displaced parkers is the preferred option during construction of the WCRI, and, as such, has been analyzed in the following discussion. The end of the section includes a discussion of the alternate construction parking locations in the event that the garage is not available.

Parking Background:
The west campus population will remain static, and the expectation is that student demand for parking will remain essentially the same as well. Currently, the student resident parking demand for west campus is approximately 270. 133 of those students hold permits to B lot.

Displaced parkers who are not accommodated in lots in the west campus and South Avenue area during construction will be offered permits in B lot. B lot has an approximate capacity of 1041 spaces, and its primary users are students and staff. Currently, it is 80% utilized during the academic year, and 65% utilized during the non-academic year, and therefore, has room for any excess need created by construction of the WCRI.

Prior to phase one, the existing tennis courts on west campus will be converted to 100 temporary parking spaces to be used until construction of the Community Recreation Center.

Phase One Construction:
The University Avenue surface lot will be built and paved at the start of this phase. Once construction of the lot is complete, construction workers will park in the new lot and work will commence on west campus. West campus work during phase one will eliminate approximately 148 parking spaces due to construction of House 1 and House 2 North at the corner of Stewart and University avenues. Concurrently, under a separate project, construction of a proposed garage between South Avenue and Edgemoor Lane will eliminate approximately 105 spaces.

All displaced staff will be accommodated in the remaining existing lots and the temporary lot. All contractors (peak of approximately 222) will be provided parking at the University Avenue Lot.
4. ALTERNATIVES TO THE PROPOSED ACTION

Relocate All West Campus Parkers to Remote Lots

Experience has shown that approximately 15% of upper class students living in campus housing will request parking permits. Although all of these students would prefer to park within walking distance of their residences, Cornell has created a balance in which about half park locally and the other half park in remote lots, such as B lot on east campus. Some students desire local parking because they have evening jobs or health problems or do volunteer work in the community. By maintaining the existing number of parking spaces in the west campus area there is no greater impact on the neighborhood. Relocating west campus parking to other peripheral locations would increase traffic impacts in other neighborhoods. If nearby parking options are not provided by the university, some of these students will not park remotely but will seek parking on nearby residential streets. The university strives for a balance between a range of on campus parking demands while minimizing impacts to residential neighborhoods. This is achieved through a combination of strong disincentives for bringing cars to campus, a strong transit program and providing a mix of both nearby parking and remote parking for those who do bring cars. The university’s Transportation Demand Management Program is described in detail in Section 2.6.1 on page 83 of the DEIS.

The university’s two primary remote lots (A and B lots) do not have space for student vehicles that are presently parked in west campus lots. A-lot’s capacity of approximately 711 parking spaces serves as periphery parking for university staff. This lot is fully subscribed. There are approximately 1313 permit holders. This 1.8:1 permit to space ratio is due to differing work shifts. Substantial expansion is not possible due to topography and existing wetlands.

B-lot was redesigned and enlarged in 2001 in order to increase the capacity and is currently at maximum size given the available area. B-lot’s capacity of approximately 1041 parking spaces currently serves several user groups including staff, students, OmniRide program participants (see section 2.6.1 for description), and meter spaces for visitors. There is some excess capacity in B-lot and this capacity is used to provide parking space for students living in Collegetown. If these spaces are filled with other parkers, the Collegetown students will not be accommodated and there will be additional demand on the Collegetown neighborhood.