City of Ithaca Staff Members
JoAnn Cornish, Director of Planning and Economic Development
Megan Wilson, Senior Planner

Winter & Company
Noré Winter
Brad Johnson
Harry Brennan
Nicholas DiFrank
Christopher Ball
Table of Contents:

Introduction..5
 Applicability ..6
 Design and Site Plan Review Process ... 6
 Relationship to the Collegetown Area Form Districts (CAF D)........................... 8
 Relationship to Other Policy and Regulatory Elements 9
 Description of the Collegetown Design Guidelines Area 11
 Collegetown Character Areas .. 12
 Urban Design Concepts .. 16
 Standard Design Guidelines Format ... 20
 Organization and Format .. 23

Guiding Principles ... 25
 Achieve Excellence in Design .. 26
 Express Human Scale ... 26
 Design for Compatibility and Respond to Context 26
 Encourage Creativity .. 27
 Address Constraints Creatively .. 27
 Activate the Street Level .. 27
 Maximize Connectivity .. 28
 Design for Sustainability .. 28

Site Design ... 29
 Building Orientation ... 30
 External Pedestrian Connectivity .. 31
 Internal Pedestrian Connectivity .. 32
 Through-Block Connectivity ... 33
 Open Space .. 34
 Surface Parking .. 35
 Driveways and Access .. 36
 Service Areas .. 37
 Fences & Walls ... 37
 Landscape Design .. 38
 Plant and Tree Selection ... 38
 Sustainable Site Design .. 39
 Freestanding Site Features ... 41
 Site Lighting ... 42
 Working with Topography ... 43
 Sensitive Site Design Transitions ... 44
Building Design .. 45
 Building Entries ... 46
 Windows ... 47
 Roofs .. 47
 Materials ... 48
 Accessory Structures ... 55
 Building Equipment ... 55
 Parking Structures/Garages ... 56
 Sustainable Building Design ... 57
 Compatible Building Design ... 58
 Street Level Interest ... 59
 Building Articulation .. 61

Sign Design .. 71
 General Sign Design Guidelines .. 72

Guidelines Specific to Character Areas ... 77
 Collegetown Core .. 79
 Residential Transition .. 82
 Neighborhood Periphery ... 84
This document provides guidance for all new development and major renovation projects in Collegetown. The guidelines are intended to promote high quality construction and exceptional urban design.

They will be used by the Planning Board, City staff, residents, developers, property owners, architects and others in the design review and site plan review processes. The document also serves as an education tool to demonstrate Collegetown design objectives and expectations.

This chapter addresses applicability, procedures and other background information that should be reviewed prior to beginning work on a project.
Applicability
The principles and guidelines in this document apply to all proposals for new development and exterior alterations to existing buildings within Collegetown, which is referred to as “Collegetown Design Guidelines Area”, the Collegetown Area Form Districts (CAFD), or “Collegetown Area” or “Collegetown” for short. The Collegetown Area is shown in Figure 1 below.

Design and Site Plan Review Process
The City of Ithaca Design Review Ordinance requires design review of projects in the CAFD. The recommendations from the Design Review Board are advisory to the Planning Board. The intent is to promote desirable growth and promote excellence in architecture and urban design. All locally designated historic properties are exempt from this design review since they undergo a special approval process conducted by the Ithaca Landmarks Preservation Commission (ILPC). The design review process is illustrated in Figure 2.
All projects must also receive approval under a Site Plan Review process prior to receiving a building permit. Unlike design review, Site Plan Review is generally required of all new construction, landscaping or infrastructure improvements that require a building permit or have a significant environmental or public impact. Like design review, site plan review seeks to improve the design of development. However, site plan review is also focused on promoting environmental sustainability and mitigating negative environmental impacts.

A project must be reviewed by the Planning Board to verify that it complies with these design guidelines, as well as the other base zoning standards in the City of Ithaca Municipal Code (in this case the CAFD). Compliance with the zoning code and all applicable guidelines in this document is required for site plan approval.

FIGURE 2: Design Review Process.

1. Application submitted for a building permit or demolition permit
2. Determination of the type of design review (limited or full) made by the Director of Planning and Development
3. FULL DESIGN REVIEW by the Design Review Board
 - Submittal of an Application for Design Review
 - Review of application by the Design Review Board
 - Written notice of decision is sent to applicant
4. LIMITED DESIGN REVIEW by Staff
 - Review by Director of Planning or designee

City of Ithaca Design Review Ordinance
The Design Review Ordinance can be found online at: http://ecode360.com/15635421

City of Ithaca Site Plan Review Ordinance
The Site Plan Review Ordinance can be found online at: http://ecode360.com/8392621
Relationship to the Collegetown Area Form Districts (CAFD)

The zoning code established the basic parameters for development. Within the City’s zoning, the Collegetown Area Form Districts (CAFD) regulates building form and land use for this specific area. The CAFD establishes prescriptive regulations for parking requirements, setbacks, lot coverage, building height, green space and more. The design guidelines supplement the CAFD with additional detail about recommended approaches and options for compliance, as well as additional guidance for design topics that are not covered in the CAFD. The guidelines reinforce and complement the CAFD rather than repeat it. Figure 3 compares the key CAFD topics with those of the guidelines.

The primary difference between the guidelines in this document and the CAFD is that the latter is prescriptive. This means that compliance with the Form Districts can be measured and compliance or non-compliance determined with certainty. Conversely, the guidelines provide a more nuanced level of guidance that requires discretion and interpretation by staff and the Design Review Board. They allow flexibility, meaning that a design approach that meets the intent of a guideline may be appropriate even though it is not explicitly identified in the document.

FIGURE 3: Code vs. Guidelines.

<table>
<thead>
<tr>
<th>PRESCRIPTIVE</th>
<th>DISCRETIONARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collegetown Form Districts Code</td>
<td>Collegetown Design Guidelines</td>
</tr>
<tr>
<td>Land Use</td>
<td>Building Orientation</td>
</tr>
<tr>
<td>Lot Size</td>
<td>Building Mass & Scale</td>
</tr>
<tr>
<td>Lot Coverage</td>
<td>Façade Character</td>
</tr>
<tr>
<td>Parking Requirements</td>
<td>Building Materials</td>
</tr>
<tr>
<td>Setbacks</td>
<td>Compatible Design</td>
</tr>
<tr>
<td>Building Height</td>
<td>Pedestrian Connections</td>
</tr>
<tr>
<td>Floor Heights</td>
<td>Service Area Location</td>
</tr>
<tr>
<td>Roof</td>
<td>Fences & Walls</td>
</tr>
<tr>
<td>Blank Wall Limits</td>
<td>Open Space</td>
</tr>
<tr>
<td>Entry Requirements</td>
<td>Landscaping</td>
</tr>
<tr>
<td></td>
<td>Sustainability</td>
</tr>
<tr>
<td></td>
<td>Lighting</td>
</tr>
<tr>
<td></td>
<td>Sign Design</td>
</tr>
<tr>
<td></td>
<td>Transitions Between Zones</td>
</tr>
<tr>
<td></td>
<td>Etc.</td>
</tr>
</tbody>
</table>
Relationship to Other Policy and Regulatory Elements
This section describes additional policy and regulatory documents in the City related to development in Collegetown.

Comprehensive Plan
Plan Ithaca, the City’s Comprehensive Plan, presents a broad vision for community development and outlines policies to achieve it. Plan Ithaca provides land use recommendations and establishes goals for development. Specifically, it emphasizes the importance of “compact mixed-use development” for both livability and sustainability. The guidelines respond to this goal by focusing on urban character and design quality, particularly at the street level.

Other key policies in the comprehensive plan seek to preserve and enhance neighborhood character, maintain a vibrant economy and offer a high quality of life. These policies are reflected throughout the guidelines.

Relationship to the Collegetown Urban Plan
The Collegetown Urban Plan identifies a broad vision for Collegetown, above and beyond what is described in the comprehensive plan. It emphasizes design goals such as improving the streetscape and pedestrian experience by developing off-street pedestrian paths and enhanced sidewalks. The Collegetown Urban Plan identifies the need to address a “canyoning” effect created by taller buildings along Dryden Road.

Historic Preservation
The Collegetown Area does not contain any historic districts, but it does abut the East Hill Historic District, which is locally and nationally designated. The Collegetown Area contains two locally designated historic landmarks: 209 College Avenue - the “Grandview House”; and 140 College Avenue - the “John Snaith House.” Development proposals and renovations on locally designated properties are reviewed by the Ithaca Landmarks Preservation Commission (ILPC) under a separate process using the Historic District and Landmark Design Guidelines. The East Hill Historic District and the two landmarks are shown in Figure 4.
FIGURE 4: Collegetown Design Guidelines Area.
Description of the Collegetown Design Guidelines Area

Collegetown is a mixed-use neighborhood that functions both as a student-oriented commercial district and residential neighborhood. It is very walkable, but sidewalk widths are sometimes limited due to narrow rights of way. Buildings range from mid-rise mixed-use buildings to multi-family residential buildings to single family detached houses.

Topography and public views contribute strongly to its character. Buildings often cover significant portions of a site in commercial areas. Collegetown is a key gateway to Cornell University and is home to the Cascadilla Gorge. The traditional residential buildings contained in the area, including many that have been converted to apartment buildings, are a key component of Collegetown’s character.
Collegetown Character Areas

Collegetown is home to a wide variety of land uses and urban character. One’s experience of different subareas in Collegetown varies significantly by street, block and quadrant. In response to this variety in character, the guidelines identify three distinct “Character Areas” in order to address unique design issues that occur in each. The Character Areas are mapped in Figure 5 and include:

- Collegetown Core
- Residential Transition
- Neighborhood Periphery

Character Areas are consistent with CAFD, but in some cases they cover more than one district as shown on the map. Specific guidelines for each Character Area are included throughout the document, and are a focus in Chapter 6.

FIGURE 5: Collegetown Character Areas.
Collegetown Core
The Collegetown Core is centered on the intersection of College Avenue and Dryden Road. It is an epicenter of activity that is densely developed and highly urban in character. Buildings are often mixed-use with ground floor commercial, upper floor office or residential, and are built close to the sidewalk edge. Heights range from 1-6 stories, but traditional building heights are about 4 stories. Primary building materials include brick and cement masonry unit (CMU). Ground floors along the street are usually transparent with storefronts or windows.

Typical building materials include brick, CMU and a variety of other masonry materials.

Ground floors along the street are usually transparent with storefronts or windows.

Buildings in the Collegetown Core typically include a clear base, middle and cap.
Residential Transition
The Residential Transition is a densely developed residential area that provides a scale transition between the Collegetown Core and Neighborhood Periphery. Building types include contemporary apartment buildings and traditional residential buildings that have been converted to apartments. Buildings are more substantially set back from the street than in the Collegetown Core and landscaping is more prevalent.
Neighborhood Periphery
The Neighborhood Periphery is the least dense of the three Character Areas. Traditional single-family homes dominate. Setbacks from the street are the most substantial of the Character Areas, and are generally landscaped. Many houses have been converted to apartments, but to a lesser extent.

These character areas were identified in order to analyze similarities and differences in development patterns across the Collegetown Area, so that more context-specific issues can be addressed in the guidelines. They are referenced throughout the Guidelines for All New Development chapter, and Chapter Four provides specific guidelines for each character area.
Urban Design Concepts

Several design-related concepts and terms are referenced in this document. This section defines these baseline ideas, which are critical to understanding the guidelines and their intent.

Project

A “project” is a general term used throughout this document to refer to any building construction, site work, renovation or other activity on a property that is subject to review of these guidelines.

Public and Private Realm

The guidelines focus strongly on the interface and relationship between private property and public areas. The term “public realm” refers to any public area, including a street, sidewalk, public plaza, park, promenade or other public way. The “private realm” refers to any activity that takes place on private property, including building edges, setback areas or other features. The interface between these elements largely determines one’s experience in an urban environment. Figure 6 diagrams the public and private realm under different conditions.

FIGURE 6: Public Realm vs Private Realm.
Orientation
Orientation is used to describe how a building or other site feature interacts with its surroundings. A building that is “oriented” toward the street means that its most primary side faces the street and is prominent when viewed from the street.

Activation
Activation typically refers to how a site or building feature animates a surrounding space. For example, a retail storefront or outdoor dining area can activate a sidewalk due to the human activity it generates.

Interest
“Interest” is used to describe a person’s experience in an urban environment. Site and building features such as entries, landscape features, art, windows, display areas and other elements enhance pedestrian interest. A blank, featureless wall diminishes pedestrian interest.

Human Scale
“Human scale” is used to describe how a person perceives a building element or a group of building elements in relation to themselves. A person relates better to building features that are of a size and scale similar to that of a human. For example, a blank wall that spans multiple stories does not properly exhibit human scale. The same wall can begin to express human scale by demarcating floors and adding appropriately sized windows and doors.

Compatibility
Compatibility is used to describe two ideas in the guidelines. Internal compatibility refers to how different elements of a single project relate to one another. An individual building’s materials could be either compatible or incompatible with each other. External compatibility refers to how a single project relates to its context. A building may be compatible or incompatible with neighboring properties based on its scale in relation to adjacent buildings.
Traditional

The term “traditional” is used throughout this document to refer to the original character of development. A traditional material is one that was used on one or more of the original buildings in a given area. For example, brick would be considered a traditional material for in the Collegetown Core and wood siding would be considered a traditional material in the Neighborhood Periphery. Building dimensions, architectural patterns and building placement may also be described as traditional. For example, buildings on the 400 block of College Avenue exhibit a traditional range of building widths.

Façade Hierarchy

While the primary focus of the design guidelines is the street-facing elements of a building, all sides of a structure must be considered. The emphasis on design varies based on the relationship of a façade to the public street. This document refers to “primary façades” and “secondary façades”. A primary façade is the true front face of a building. Typically a main entry is located on this façade. In some cases, a single building may have two primary façades, but all buildings should have at least one. A secondary façade may or may not include a functional entry depending on the circumstance. Where an entry is located on a secondary façade, it is typically visually subordinate to an entry located on a primary façade. A special type of secondary façade is an “interior façade.” An interior façade faces an internal side or rear property line.

Design guidelines sometimes discuss these façades differently. For example, a design guideline may encourage a primary façade to face a certain street or street type. Figure 7 illustrates the façade types that should be considered.

FIGURE 7: Façade Hierarchy
Street Types
This document refers to “primary” and “secondary” streets. The guidelines place higher design expectations on building edges and setback areas that interface with a primary street. In some cases, more design flexibility is appropriate on a secondary street. Where a building only fronts a secondary street, the secondary street should be treated as a primary street. Where a building fronts two secondary streets, a project applicant should designate one of the streets as the primary street in coordination with City staff. Figure 8 provides suggested designations for each street by Character Area.

FIGURE 8: Street Types

<table>
<thead>
<tr>
<th>Street Type</th>
<th>Collegetown Core</th>
<th>Residential Transition</th>
<th>Neighborhood Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Streets</td>
<td>Dryden Road College Avenue Eddy Street</td>
<td>Dryden Road College Avenue Summit Avenue Catherine Street Linden Avenue</td>
<td>Dryden Road Oak Avenue College Avenue Mitchell Road</td>
</tr>
<tr>
<td>Secondary Streets</td>
<td>Bool Street Catherine Street Cook Street</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Street Type</th>
<th>Collegetown Core</th>
<th>Residential Transition</th>
<th>Neighborhood Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Streets</td>
<td>Dryden Road College Avenue Eddy Street</td>
<td>Dryden Road College Avenue Summit Avenue Catherine Street Linden Avenue</td>
<td>Dryden Road Oak Avenue College Avenue Mitchell Road</td>
</tr>
<tr>
<td>Secondary Streets</td>
<td>Bool Street Catherine Street Cook Street</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Priority and Secondary Guidelines
Guidelines identified as “Priority Guidelines” are required and must be met by all projects. However, there may be cases where a priority guideline simply does not apply based on the circumstances. For example, a priority guideline that requires variation in massing on upper floors would not apply to a single-story building. “Secondary Guidelines” are strongly encouraged, but not all of them are mandatory for every project. A project should meet a sufficient number of the Secondary Guidelines as determined on a case-by-case basis.

Standard Design Guidelines Format
To facilitate ease-of-use, the individual design guidelines in this document use a standard format. The format includes topic headings, intent statements related to the topic, numbered design guidelines, additional information about appropriate strategies and illustrations or diagrams. Figure 9 uses a sample design guideline page from Chapter 4 to illustrate each key element.
Key to the Sample Design Guideline Format

<table>
<thead>
<tr>
<th>A</th>
<th>The design topic is indicated with a heading followed by an intent statement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>The design guidelines describe an intent or desired outcome, with supplementary information listed in bullets below. Priority Guidelines are indicated in green text.</td>
</tr>
<tr>
<td>C</td>
<td>Photographs and diagrams are provided to illustrate design guideline principles. Sometimes a ✓ or a ✗ is used to indicate whether the example is appropriate or inappropriate. Captions help explain the intent of the photo and tie it to the guideline text.</td>
</tr>
<tr>
<td>D</td>
<td>Sidebars are sometimes included to provide additional background information or cross-references to other documents or policies.</td>
</tr>
</tbody>
</table>

Accessory Structures

Accessory structures are important components for many properties. Their form differs significantly depending on building type and use. In general, an accessory structure should be subordinate to the primary structure and its visibility from the street should be minimized.

BD.1. Design an accessory structure to be subordinate to the primary structure.

BD.2. Minimize the visibility of an accessory structure as seen from the public street.
- Where possible, locate an accessory structure behind a primary building so that it is not visible from the street.

BD.3. If an accessory structure is partially or fully visible from the public street, design it to be coordinated with the design, detailing and materials of the primary structure.

![Design an accessory structure to be subordinate to the primary structure.](image-url)
Which Chapters Apply to My Project?

The chart below indicates which chapters are most relevant to different types of work in the Collegetown Area. For some smaller projects, all relevant design guidelines may be found in one chapter (i.e., a project to expand and re-landscape a parking area may be subject only to the guidelines in Chapter 3). For larger projects, several chapters may apply (i.e., a new mixed-use or commercial project in the Collegetown Area may be subject to Chapters 1-6).

<table>
<thead>
<tr>
<th></th>
<th>Ch.1 Introduction</th>
<th>Ch.2 Guiding Principles</th>
<th>Ch.3 Site Design</th>
<th>Ch.4 Building Design</th>
<th>Ch.5 Signs</th>
<th>Ch.6 Guidelines Specific to Character Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Building Addition</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscaping/ Site Work</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signage</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Organization and Format

The design guidelines are organized and formatted to support consistent design review. See “Document Organization” below for more information about the organizational structure of the document and “Standard Design Guidelines Format” on page 21 for more information about the format of the design guidelines within this document.

<table>
<thead>
<tr>
<th>Document Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following the introduction, the design guidelines are organized into six separate chapters by design topic, as summarized below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 1 Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>The introduction summarizes the purpose and policy foundation of the guidelines. It also describes the organization and format and the design review process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2 Guiding Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter provides overarching design principles for all development in the Collegetown Area to serve as a framework for the design guidelines that follow.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3 Site Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter provides general site guidelines applicable to all new construction in the Collegetown Area. It covers issues of site design, including street character and landscaping, building placement, connectivity, open space, parking, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 4 Building Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter provides design guidelines for the visual and functional character of buildings throughout the Collegetown Area. Topics include building scale, architectural character, materials and ground floor design.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5 Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter provides guidelines for signs, including type, location and lighting.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6 Guidelines Specific to Character Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>This chapter provides additional guidance for new development in the specific character areas in the Collegetown Area (Collegetown Core, Residential Transition and Neighborhood Periphery). These guidelines supplement the guidelines in Chapters 3-5 to provide additional nuanced, context-based guidance for each area.</td>
</tr>
</tbody>
</table>
The guidelines and the review process through which they are administered seek to maintain Collegetown as a cohesive and livable place with an attractive and pedestrian-oriented environment. They promote maintenance of traditional character while encouraging architectural creativity and contemporary design. The following guiding principles provide a foundation for the design guidelines. Each project should be consistent with the Guiding Principles.
Achieve Excellence in Design
All development in Collegetown should achieve excellence in design. This includes using high quality materials and construction methods, and paying attention to the intent of the guidelines. The bar for design in Collegetown should be set high. Thoughtful designs should provide a sense of character and a positive pedestrian-oriented experience.

Express Human Scale
As discussed in Chapter 1, people relate best to a building when it includes elements that are at a scale they can easily perceive. Breaking a building up to create human scale features is critical to creating a building that positively impacts the public realm. All projects should express a human scale through the organization, scaling and composition of architectural elements.

Design for Compatibility and Respond to Context
Buildings in Collegetown exhibit a fair amount of consistency within individual Character Areas through their materials, scale and massing, organization of functions and other features. New infill development should respect the design traditions of Collegetown by drawing on these qualities.
Encourage Creativity
The guidelines establish expectations for development, but also encourage creativity in meeting expectations. Collegetown’s architectural patterns should strongly influence the design of new infill development, but modern design techniques and creative uses of materials are encouraged. New infill and renovations should draw design inspiration from older, traditional buildings, but should also creatively exhibit contemporary design approaches.

Address Constraints Creatively
Collegetown presents a variety of constraints to development. Irregular lot shapes, varied topography and soil issues are examples. The guidelines seek to improve urban design without significantly impacting project costs. Objectives must be balanced with a realistic sense of development costs and other constraints. The guidelines encourage creative solutions and provide flexible options in meeting design objectives.

Activate the Street Level
Collegetown should continue to be a walkable environment. Projects should contribute to the public realm by creating pedestrian interest and comfort. Buildings should connect visually and physically to public streets and spaces. These principles are particularly important at the ground level.
Maximize Connectivity
Collegetown properties should help establish an interconnected circulation system for all modes. Interruptions to public sidewalks and vehicle-pedestrian conflicts should be minimized. Clear and direct connections within a development site and between a development site and public areas (such as Cascadilla Gorge Trail) are critically important.

Design for Sustainability
Ithaca has prioritized sustainability through both policy and practice. Site and building design will be an important factor in achieving these objectives. Projects should incorporate features, construction methods and design techniques that reduce energy, conserve resources and minimize environmental impacts to help move Ithaca toward a sustainable future.

Projects should incorporate features, construction methods and design techniques that reduce energy, conserve resources and minimize environmental impacts to help move Ithaca toward a sustainable future. For example, a rain barrel can help capture and recycle rain water.
Site design refers to the arrangement and placement of buildings and site features and the relationship of these elements to public areas and neighboring properties. This chapter provides site design guidance for all projects in Collegetown. It shall be used in conjunction with the Character Area-specific guidelines in Chapter Five. Figure 10 illustrates key site design considerations on a simple site plan diagram.

FIGURE 10: Key Considerations of Site Design.
Building Orientation

Building orientation refers to how elements and functions of a building wall relate to their surroundings. Buildings should be sited to establish a strong visual and physical connection to the public realm. A building’s primary façade should face the street in order to create an engaging and pedestrian-friendly streetscape.

SD.1. Orient a building to the public realm.
- Orient a building’s primary façade, including its primary functional entry, to face a street. Orienting a primary façade to a public plaza or other prominent public space is also acceptable as illustrated in Figure 11.
- If a building fronts two or more prominent public spaces, orient to as many of them as is feasible.

FIGURE 11: Building Orientation.
External Pedestrian Connectivity

Excellent pedestrian access should be provided between the public realm to a site and building. A strong physical and visual relationship between these elements enhances walkability.

SD.2. Provide a physical pedestrian connection between a site and the public realm. Appropriate options include:
- A door that opens directly to a public space.
- A walkway that connects a building to a public space through a setback area.
- A plaza, outdoor seating area or patio that connects a building to a public space.

SD.3. Where applicable, connect a site to the Collegetown pedestrian and open space network, including the Cascadilla Gorge Trail.

Provide a physical connection between a site and the public realm.

A door that opens directly to a public space.

A walkway that connects a building to a public space through a setback area.

A plaza, outdoor seating area or patio that connects a building to a public space.
Internal Pedestrian Connectivity

A site design should establish an internal pedestrian circulation system that connects site components and is integrated with the public realm.

SD.4. Establish an internal walkway system that connects key site features, such as building entries, parking areas, and open spaces.
 • Use landscaping, special paving and distinct lighting to accentuate and clarify a site’s circulation system.
 • Consider directing an internal walkway through a plaza, courtyard or other outdoor feature.
 • Size an internal walkway of an adequate width to allow safe pedestrian access.
 • Design an internal walkway to be ADA accessible.
 • Integrate an internal walkway system with the public pedestrian circulation system.
Through-Block Connectivity
Long blocks can create barriers to pedestrian access. Projects are encouraged to provide a pedestrian connection through a long block where possible to increase area-wide pedestrian connectivity.

SD.5. **Provide public pedestrian access through a block.**
Methods include:
- A simple path connecting two streets through a block.
- A pedestrian paseo integrated with an open space or retail amenity that connects through a block.
- An alley that is designed to be shared by pedestrians and automobiles.

Provide a pedestrian pathway integrated with an open space or retail amenity that connects through a block where feasible. This may require coordination with neighboring property owners.
Open Space

Courtyards, street-adjacent plazas, linear outdoor dining areas, and other open spaces provide places for customers and tenants to gather and engage in activities. When located adjacent to a public space, these features can activate and enhance the pedestrian experience. A project should incorporate open space into a site design where feasible.

SD.6. Incorporate an open space into a site design where feasible.
- Consider placing an open space so that it is visually and physically connected to a public space.
- Link an open space to internal site features and the public realm.
- Size an open space to be adequate for its function.
- Enclose an open space by framing it with building edges, landscaping or other site elements.
- Site an open space to maximize sun exposure.
- Program an open space with site features or activities that will keep it lively and occupied.

Options for a public-oriented open space include:

- A courtyard between buildings, integrated with the public sidewalk.
- A corner plaza adjacent to the public sidewalk and street.
- A linear outdoor dining or seating area.

Orient an open space to be visually and physically connected to the public street and sidewalk.

Enclose an open space by framing it with building edges, landscaping or other site elements.
Surface Parking
Building walls “frame” the spaces they abut. With careful design, a building can provide enclosure to a public space in a manner that enhances pedestrian comfort. Conversely, a surface parking area adjacent to a street or public space can create a void in the built street edge that decreases pedestrian comfort. Where a surface parking area is provided, its visual impact on the public realm should be minimized.

SD.7. Locate a surface parking area to the interior of a site, away from the public street.
• Set back a surface parking area a minimum of twenty feet from the property line.

SD.8. If surface parking is located adjacent to a street, buffer or screen it. Use or combine the following methods:
• Landscaping
• Site walls
• Decorative fencing
• Public art
• Other methods that meet the intent of this guideline

If surface parking is located adjacent to a street, buffer or screen it.

Surface Parking Screening
Options include:

Landscaping

Site Wall

Public Art

Decorative Fencing
Driveways and Access
Automobile access is often critical to the functionality of a site. However, it should be unobtrusive. Driveways should be designed to promote safety and minimize pedestrian-vehicle conflicts.

SD.9. Minimize the number of vehicular access points to a site.
- Encourage shared, consolidated access between adjacent properties.
- Discourage driveway access from a primary street where other options are available.

SD.10. Minimize the width of a driveway where it crosses a pedestrian way.
Service Areas
Service areas, such as trash receptacle and loading areas, can negatively impact the streetscape and pedestrian experience when visible. These features should be integrated and coordinated with site and building features. The visual impact of a service area on the public realm should be minimized.

SD.11. Locate a service area so that it is not visible from the public street.
- Locate a service area to the interior of a site, and away from the public street wherever possible. If a service area is located within view of a public street, screen it from view with a solid wall, opaque fence or landscaping.

Fences & Walls
Fences and walls are often used to enclose a private outdoor space. Retaining walls are used to address site topography. Fences and walls should be carefully coordinated with the overall site design of a property. Visible fence and wall materials should be compatible with materials used throughout a site and on a building. Fence and wall guidelines are most critical for areas of a site that are visible from the public realm.

SD.12. Coordinate a fence or wall with an overall site design concept.
- Create fence or wall opening as needed to integrate an internal circulation system.

SD.13. Use a fence or wall material that is compatible with other building and site materials.
- Coordinate a fence material with a primary or secondary material on a primary building.
- Use a consistent material(s) and pattern for a publicly visible fence or wall.
Landscape Design

Landscaping can enhance a project by providing visual interest, tying together key site features, providing shade, screening unattractive site features from public view, or providing buffers between properties. Landscaping can also help to soften an urban environment. Landscaping should be considered for a site, even when there is limited space.

SD.14. Preserve an existing tree wherever possible.
- “Design around” an existing tree.
- Consider integrating an existing tree as a site feature or design element.
- Plant additional trees to increase canopy.

SD.15. Use a coordinated landscape palette to establish a sense of visual continuity within a site.
- Use a consistent palette throughout the property. Variation is encouraged, but landscaping elements should be thoughtfully organized.

SD.16. Use landscaping to highlight a building entry, walkway or other feature.

SD.17. Use landscaping to provide screening along a sensitive edge, like a residential property or natural feature.

Plant and Tree Selection

Plants and trees that are proven successful in Ithaca’s climate should be selected to reduce the need for maintenance and replacement.

SD.18. Minimize irrigation.

SD.19. Use native tree and plant species that thrive in Ithaca’s climate.
- Use drought tolerant species that requires minimal irrigation.
Sustainable Site Design

Sustainability is a critical community objective in Ithaca and is prioritized in many city policy documents. Site designs should contribute to a sustainable future for Ithaca. Incorporate sustainability features wherever possible. Site design elements should reduce energy consumption and stormwater runoff.

SD.20. Site a building or open space to maximize sun exposure and utilize passive solar design.

SD.21. Integrate low impact development (LID) features to minimize impacts to the municipal stormwater system and area watersheds.
 • Include a stormwater management feature, such as a bioretention area or rain garden, as a site amenity or landscape feature.
 • Use permeable surfaces and paving systems that allow water infiltration.
 • Use generous site landscaping to absorb site runoff.

SD.22. Use landscaping to reduce the need for heating and cooling.
 • Use trees and landscaping to create shade in warm months and sun exposure in cool months.

SD.23. Choose a site material that reduces energy consumption.
 • Use a local, recycled material where possible.
 • Use a light colored surface material that reflects heat.
 • Consider incorporating an energy-generating feature on a site. This may include a wind turbine, freestanding solar panel, solar powered lighting or other similar feature.
Maximizing Solar Exposure

Development A is designed to maximize the solar exposure of the building and the plaza/open space. Also, Development A utilizes trees and landscaping to reduce the need for heating and cooling.
Freestanding Site Features
Freestanding site features include benches, sculptures, planters and other similar elements. They are functional components that can also enhance a project aesthetically. They can provide pedestrian interest, complement open spaces or animate special areas.

SD.24. Provide a freestanding feature to enhance a site element and/or the public realm. Potential features may include, but are not limited to:
 • Benches
 • Tables
 • Planters
 • Public Art
 • Kiosk

SD.25. Integrate a freestanding feature within the overall design of a site.
 • Locate a feature so that it does not impede pedestrian circulation or vehicular access.
 • Locate a feature to take advantage of an active area on a site, such as within an open space, along a walkway or near a building entry.
 • Do not use excessive site furnishings that may go unused.
 • Use a material that is consistent and that coordinates with other site and building materials.
Site Lighting

Site lighting is important for safety and can be used to enhance a design. Lighting should be carefully designed and placed to minimize unnecessary light pollution.

SD.26. Scale site lighting to reflect its purpose.
- Use a small-scale fixture with down-lighting or light bollards to illuminate a pedestrian walkway.
- Use medium scale (15 to 18 feet in height, roughly) overhead lighting for a common outdoor space, building entry, parking area or internal driveway.

SD.27. Minimize light spill onto adjacent properties and toward the sky.
- Use a fixture(s) that provides even lighting for a plaza, courtyard or patio area.
- Shield site lighting to minimize off-site glare.
- Orient fixtures toward the ground.

SD.28. Integrate a lighting fixture with the design of the overall building and site.
- Use a style that is compatible with a building and site design. For example, use a contemporary fixture for a contemporary building.
- Choose a material that is compatible with materials used on the building and throughout a site.
Working with Topography

Some projects occur on sites with significant topography and grade change. A site design should work with existing topography wherever possible rather than creating a flat site. This is a sustainable practice and helps to retain terrain that contributes positively to Collegetown’s character. A regrading effort should not negatively impact the public realm.

SD.29. **Design a site to integrate with and take advantage of existing topography.**

- Incorporate a topographic feature as an open space or landscape amenity where feasible.
- Where on-site parking is provided, consider taking advantage of site topography to provide subterranean or partially subterranean parking.
- “Terrace” a building into a hillside to minimize site disturbance and create private outdoor spaces and site features.
- Step the foundation of a building along a sloped street and create a rhythm of building entries that change vertical position along with the slope of a street.
- Where a taller wall is necessary, use a series of landscaped terraces or stepped walls.

Terrace a building into a hillside to minimize site disturbance.
Sensitive Site Design Transitions
Site design features should be used to reduce conflicts between adjacent properties. In Collegetown, a multi-story mixed use or commercial property may share a lot line with a sensitive residential property. Where a potential conflict occurs, the impacts of a commercial activity should be mitigated.

SD.30. Minimize negative impacts of a commercial operation on an adjacent residential property.
- Locate a commercial activity that generates noise, odor or other similar impacts away from a shared lot line with a residential property.
- Where a commercial use is adjacent to a residential use, buffer or screen the commercial activities. This could include a buffer area with landscaping and amenities such as an exercise area, picnic area, or pedestrian walkway.

SD.31. If in the Neighborhood Periphery, site a building to include side setbacks in the range of those used for nearby traditional homes.

![Diagram of sensitive site design transitions showing different scenarios:]

- **A** Trash areas are set back and screened from the adjacent residential property with landscaping and an enclosure.
- **B** The commercial building uses landscaping as a screen.
- **C** The commercial building uses open space as a buffer.
A building’s design and the arrangement of its features can strongly impact the public realm. Buildings should incorporate “human scale” components to break them up into smaller, perceivable elements that are closer in size to a typical person, adding to pedestrian comfort and increasing walkability. Architectural treatments should accentuate key building elements and provide visual interest at interfaces with the public realm. Buildings should be designed to sensitively “fit in” to an existing neighborhood by using certain materials, or drawing on the basic characteristics of nearby buildings and neighborhoods.
Building Entries

Building entrances provide a key visual connection between the public and private realm. A door should be easily recognizable and should provide a strong visual and physical connection to the public realm. Building entries should be spaced to provide visual continuity along a street and read similarly to traditional buildings in an area.

BD.1. **Design the primary entrance to a building to be clearly identifiable.**
 - Use an architectural element(s) to highlight an entrance.
 Potential treatments include:
 - Canopy
 - Awning
 - Arcade
 - Portico
 - Stoop
 - Building recess
 - Moldings

BD.2. **Use an authentic, functional entry on a street-facing façade where possible.**

BD.3. **Size and proportion an entry element to be in the range of heights and widths of nearby traditional entries.**
 - Size a door to be easily readable and recognizable, but to not be overly large.
 - Use a vertically oriented door that is in keeping with traditional door patterns in the area.

BD.4. **Maintain a regular rhythm of entries along a street.**
 - Use a common door height on a ground floor and on a visible upper floor.
 - Provide space between entries on a building to be generally consistent with spacing on nearby traditional buildings.
Windows
Windows are a key design element for Collegetown buildings. Their design and arrangement should express a human scale, create visual continuity with context and provide visual interest to the public realm.

BD.5. Locate and space windows to express a traditional rhythm and create visual continuity. This is particularly relevant in the Collegetown Core.
- Provide consistent horizontal spacing between windows on a floor.
- Vertically align windows on upper and lower floors.
- Provide a common head height for windows on a single floor. Minor deviations may be appropriate for an accent, but vertical alignment and horizontal spacing should remain consistent.
- If a glazed wall is utilized, use spandrels, moldings, awnings or sills to provide vertical and horizontal expression.

BD.6. Place a window opening to correspond to an actual interior space.

BD.7. Size and proportion a window to be in the range of heights and widths of nearby traditional windows.
- Size a window to be easily recognizable, but to not be overly large.
- Use a vertically oriented window on an upper floor that is consistent with traditional window proportions in the area.

BD.8. Design a window to create depth and shadow on a façade. This is particularly relevant in Collegetown Core.
- Design a window to appear to be “punched” into a masonry wall.
- Do not use a window that appears pasted on to a façade.

Roofs
Roofs contribute to a building’s character. Roofs should be integrated with overall design of a building and be compatible with surrounding context.

BD.9. Design a roof to be architecturally consistent with the overall architectural design and detailing of the structure in terms of the form and material.

BD.10. Design a roof to be compatible in massing and form to traditional buildings in the surrounding context.
- Where a variety of roof forms is prevalent in an area, allow flexibility as permitted by the CAFD requirements.
Materials

Materials and their composition strongly impact the perception of a building or site. They should be used to convey human scale and provide visual interest to the public realm. Materials should also be proven durable in Ithaca’s climate to prevent deterioration over time. Typical materials vary significantly among the three Collegetown Character Areas, so it is important to consider context when choosing a material. Figure 12 shows suggested materials for each Character Area.

BD.11. Use materials to convey a sense of human scale and visual interest.
- Add visual interest through texture, finish and detailing.
- Use changes in material to add visual interest and express a human scale.
- Use an accent material to highlight an important feature like an entry or window.
- Use materials to create contrast and shadow.
- Use a limited number of materials so that a façade does not appear overly busy or confusing.
- Avoid overuse of visually “flat” or panelized materials (such as synthetic stucco or EIFS) that result in monotonous, featureless surfaces. Limited applications of synthetic stucco or another visually flat material may be appropriate as a wall panel or as an accent on an upper floor, but should be complemented with a material rich in texture or with a dynamic finish.

BD.12. Use a material that is compatible with the surrounding context. This is particularly important in the Collegetown Core and Neighborhood Periphery.
- Use a traditional material or an alternative material that is similar in appearance to a traditional material.

BD.13. Use a high quality material that is proven durable.
- Use a material that is proven durable in Ithaca’s climate.
- Use a ground level material that can withstand on-going contact with the public and retain its quality.
Appropriate Building Materials For Each Character Area

The following table indicates which building materials are appropriate (A) or inappropriate (-) in each of the character areas.

<table>
<thead>
<tr>
<th></th>
<th>Collegetown Core</th>
<th>Residential Transition</th>
<th>Neighborhood Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MU-1</td>
<td>MU-2</td>
<td>A</td>
</tr>
<tr>
<td>Cladding</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Wood Clapboard</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Wood Shingle</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cementitious Clapboard</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cementitious Shingle</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Brick</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Stone</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cementitious Stucco Panel</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Synthetic Stucco (EIFS)</td>
<td>*</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>True Stucco</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pre-Finished Metal Panel</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Glass Curtain Wall</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>*Only above the 2nd story</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Wood</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cementitious Trim Board</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cellular PVC Trim Board (AZEK)</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Stone</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Brick</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Pre-Finished Metal Panel</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Doors</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Wood</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Steel Doors</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Extruded Glass and Aluminum</td>
<td>**</td>
<td>**</td>
<td>-</td>
</tr>
<tr>
<td>Solid Glass</td>
<td>**</td>
<td>**</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>*Secondary elevations only **When part of a storefront only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

FIGURE 12: Materials
<table>
<thead>
<tr>
<th>Windows</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood Frame</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clad Wood Frame</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Fiberglass Frame</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Extruded Aluminum</td>
<td>A</td>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Steel Frame</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Clear Glass</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Specialty Windows</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roofs</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Tile</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Slate</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Metal Shingle</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Panelized, Standing Seam Metal Roofing</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Traditional Standing Seam Metal</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Single-Ply or Asphalt Rolled Roofing</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

*Flat or low-pitched roofs only
*Flat or low-pitched roofs only
*Flat or low-pitched roofs only

<table>
<thead>
<tr>
<th>Stoops/Porches</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone, Natural or Cast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Concrete</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Powder-Coated Steel or Aluminum</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Painted Metal</td>
<td>A</td>
<td>-</td>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>Wood</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cementitious Shingle</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Wood Composite (Trex)</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Cellular PVC Trim Board (AZEK)</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>True Stucco</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Wood Shingle</td>
<td>-</td>
<td>-</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

*Supporting the stoop roof only
*Supporting the porch roof only
*Supporting the porch roof only
Fencing

<table>
<thead>
<tr>
<th>Material</th>
<th>Wood</th>
<th>Iron</th>
<th>Steel</th>
<th>Powder-Coated Aluminum</th>
<th>Wood Composite</th>
<th>Cellular PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Retaining Walls

<table>
<thead>
<tr>
<th>Material</th>
<th>Natural Stone</th>
<th>Split-Face CMU</th>
<th>Poured Concrete</th>
<th>Landscape Timber</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

Wood Clapboard, Wood Shingle, Cementitious Clapboard, Cementitious Shingle, Brick

Stone, Cementitious Stucco Panel, Synthetic Stucco, True Stucco, Pre-Finished Metal Panel

Glass Curtain Wall
<table>
<thead>
<tr>
<th>Trim</th>
<th>Wood</th>
<th>Cementitious Trim Board</th>
<th>Cellular PVC Trim Board (AZEK)</th>
<th>Stone</th>
<th>Brick</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Finished Metal Panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Doors</th>
<th>Wood</th>
<th>Fiberglass</th>
<th>Steel Doors</th>
<th>Extruded Glass and Aluminum</th>
<th>Solid Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Windows</th>
<th>Wood Frame</th>
<th>Clad Wood Frame</th>
<th>Fiberglass Frame</th>
<th>Extruded Aluminum</th>
<th>Steel Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clear Glass</th>
<th>Specialty Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Roofs</td>
<td>Asphalt Shingle</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Traditional Standing Seam Metal</td>
<td>Single-Ply or Asphalt Rolled Roofing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Porches</th>
<th>Stone, Natural, or Cast</th>
<th>Brick</th>
<th>Concrete</th>
<th>Powder Coated Steel or Aluminum</th>
<th>Painted Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>Cementitious Shingle</td>
<td>Wood Composite (Trex)</td>
<td>Cellular PVC Trim Board (AZEK)</td>
<td>True Stucco</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Wood Shingle |
| |</p>
<table>
<thead>
<tr>
<th>Fences</th>
<th>Wood</th>
<th>Iron</th>
<th>Steel</th>
<th>Powder-Coated Aluminum</th>
<th>Wood Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellular PVC</td>
<td>🎨</td>
<td>🎨</td>
<td>🎨</td>
<td>🎨</td>
<td>🎨</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retaining Walls</th>
<th>Natural Stone</th>
<th>Split-Face CMU</th>
<th>Poured Concrete</th>
<th>Landscape Timbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>🎨</td>
<td>🎨</td>
<td>🎨</td>
<td>🎨</td>
<td>🎨</td>
</tr>
</tbody>
</table>
Accessory Structures
Accessory structures are desired for many properties. An accessory structure should be subordinate to a primary structure and its visibility from a public space should be minimized. A visible accessory structure should be compatible with a primary structure.

BD.14. Design an accessory structure to be subordinate to a primary structure.
- Locate an accessory structure to the rear of a primary structure.
- Where possible, locate an accessory structure so that its view from the street is blocked by the primary structure.
- Size an accessory structure to be at a lower scale and size as compared to the primary structure.

BD.15. If an accessory structure is partially or fully visible from the public street, design it to be compatible with the primary structure.

BD.16. Use detailing and materials that are coordinated with the primary structure.

Building Equipment
Utility service boxes, telecommunication devices, cables, conduits, vents, chillers and fans are among the equipment that is often attached to a building. This equipment draws away from the structure itself and can adversely affect quality of the pedestrian experience. Buildings should minimize the visual impact of mechanical and other building equipment on the public realm.

BD.17. Minimize the visual impact of building equipment and equipment affixed to a building.
- Locate a utility connection or service box to the sides or rear of a building. If this equipment must be included on a street facing façade, locate it on a secondary façade.
- Screen equipment with an architectural screen wall, fencing and/or a landscape element.
- Integrate a visible window air conditioning unit into the design of a building. Screen a window air conditioning unit that is visible from the public realm with an architectural feature where possible.
- Use low-profile mechanical equipment on a rooftop.
- Set back rooftop mechanical equipment from the building edge.
- Locate a satellite dish on a side or rear façade so that it is not visible from the street.
Parking Structures/Garages

Parking structures can consolidate parking, thereby decreasing the need for large surface parking areas. Their design at the street level and upper levels should minimize the visibility of parked cars. For ground floor design on a parking structure, refer to “Street Level Interest” below.

BD.18. On upper floors, minimize the visibility of parked cars and prevent a monotonous appearance on a parking garage wall.
 • Use an architectural screen, special architectural feature, landscaping or another method to screen vehicles.

BD.19. Place a screening feature to fit within the overall architectural design of the parking structure.

Parking Structure Screening

Appropriate methods include:

- A landscaping screen.
- An architectural screen.
- Wrap with an active use.
Sustainable Building Design

Sustainability is a critical objective for Ithaca and the city’s buildings will play a critical role in achieving it. Buildings should be designed to maximize energy efficiency. Designs should also address seasonal changes in natural lighting and ventilation conditions. Buildings in Collegetown should incorporate sustainable design features wherever possible, with an understanding that sustainability objectives must be balanced with those of placemaking and urban design.

BD.20. **Consider including a building design feature that conserves energy.**
- Utilize external shading (landscape and/or integrated into the building) to keep out summer sun and let in winter sun.
- Design a building to take advantage of energy-saving and energy-generating opportunities.
- Design windows to maximize light into interior spaces.
- Use exterior shading devices, such as overhangs, to manage solar gain in summer months and welcome solar access in winter months.
- Incorporate a renewable energy device, including a solar collector or wind turbines.
- Utilize highly efficient internal equipment (e.g. lighting, plug loads) and controls.
- Use energy and water-efficient appliances and fixtures.

BD.21. **When redeveloping a site, salvage or reuse site and building materials where possible.**
- Incorporate a functional existing building into a redevelopment project in order to minimize waste and greenhouse gas emissions associated with demolition.

BD.22. **Include a feature or amenity that encourages walking or biking as an alternative to driving.**
- Include bicycle storage facilities, covered bicycle parking, employee showers and other bicycle-friendly amenities in a building or on-site.
- Include excellent pedestrian facilities that are well connected to the external pedestrian circulation system.

BD.23. **Provide a parking area that supports fuel-efficient and electronic vehicles.**
- Provide compact parking spaces.
- Provide one or more electronic vehicle (EV) charging stations.
Compatible Building Design

Buildings should be compatibly scaled and draw on Collegetown’s architectural traditions, yet also allow new, creative designs. This will create visual continuity along the street and a cohesive transition from building to building. This guideline is particularly relevant in the Collegetown Core and Neighborhood Periphery.

BD.24. Design a building and its elements to maintain a scale that reflects elements on nearby traditional buildings.
- Articulate a building mass to include vertical and horizontal elements that are similar to those elements on nearby traditional buildings.
- Align the floors of a building to generally align with those of traditional buildings on a block.

BD.25. When constructing a multiple dwelling unit in the Neighborhood Periphery, break up a street facing façade to clearly differentiate each unit.

Design a building and its elements to maintain a scale that reflects elements on nearby traditional buildings.
Street Level Interest
A building’s ground floor strongly impacts the pedestrian experience on an adjacent public space, like a sidewalk or public plaza. Architectural elements must be combined to establish interest for pedestrians. A blank or featureless ground floor can diminish interest. This applies to both standard buildings and parking structures. Options for creating street level interest are shown in Figure 13. The Figure also suggests which techniques should be prioritized based on adjacent “street type” and Character Area. As shown, more flexibility is appropriate on a façade that faces a secondary street.

BD.26. **Design a ground floor to engage the public realm and provide visual interest for pedestrians.**
- Use the street level interest options in Figure 13. Note that features identified in the table as appropriate on a façade that faces a secondary street may also be used on a façade that faces a primary street. However, features identified as appropriate for a primary street should make up the majority of the façade.
- Where a property does not front a primary street, City staff and applicant should designate a street as the primary street.
- Apply these guidelines to a parking structure that occurs at the street level.
FIGURE 13: Street Level Interest

<table>
<thead>
<tr>
<th>Street Level Interest Option</th>
<th>Character Area</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Collegetown Core</td>
<td>Residential Transition</td>
<td>Neighborhood Periphery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary Streets*</td>
<td>Secondary Streets*</td>
<td>Primary Streets*</td>
<td>Secondary Streets*</td>
</tr>
<tr>
<td>A Functional Entry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>B Windows</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>C Display Windows</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D Decorative Wall Surface</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>E Landscaping</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>F Wall Art</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* See Figure 8 in the Introduction for the classification of street types in each character area.

Diagram:
- **A**: Functional Entry (Storefront)
- **B**: Windows (Residential)
- **C**: Display Windows
- **D**: Decorative Wall Surface
- **E**: Landscaping (Trellis)
- **F**: Wall Art (Planter)
Building Articulation

Building articulation includes vertical or horizontal changes in materials, color, wall plane or other elements that reduce real and perceived building scale. All Collegetown buildings should incorporate articulation methods. For the purposes of these guidelines, building articulation methods include two categories:

- **Façade Articulation.** Façade articulation methods reduce perceived building mass. They break down a building into human scale components and express a sense of horizontal and vertical scale. However, these methods do not significantly affect the overall square footage of a floor or building. All Collegetown buildings should incorporate façade articulation methods.

- **Mass Variation.** Mass variation methods reduce actual building mass and scale. They modulate a building floor or wall in a manner that creates a physical relief in an architectural form. Variations may affect enclosed square footage on a floor and building.

Building Articulation methods are illustrated in Figure 14.
A1 Accent Lines

Accent lines include vertical and horizontal expression lines on a building wall. An accent line often projects slightly from the face of a building wall.

Examples include:
- Moldings
- Sills
- Cornices
- Canopies
- Spandrels

A2 Color Changes

Color changes include significant vertical or horizontal changes (15'-30' min) in color on a building wall.

A3 Material Changes

Material changes include significant vertical or horizontal changes (15'-30' min) in material on a building wall.

A4 Minor Wall Offsets

A minor wall offset is a vertical expression line created by notching a building wall for its full height. Minor wall offsets are typically 5 feet or less.
Mass Variation Methods

A5 Height Variation

A height variation is an actual reduction in the vertical scale of a building of at least one floor.

A6 Increased Setbacks

An increased setback is similar to a minor wall offset, but with a larger dimension. It is established by providing a larger setback on a portion of a wall for its full height.

A7 Upper Floor Stepback

An upper floor stepback is similar to an increased setback, but it only occurs on an upper floor(s). It is created by setting back an upper story building wall relative to those on a lower story.
Combining Building Articulation Methods
A single building articulation method is typically insufficient to achieve a desired design outcome or promote architectural creativity and interest. Combining multiple methods into a single building is highly encouraged. As shown in Figure 15, a building often includes some or all of the building articulation methods identified previously in Figure 14.

FIGURE 15: Combining Building Articulation Methods

- A1 Accent Lines
- A2 Color Changes
- A3 Material Changes
- A4 Minor Wall Offsets
- A5 Height Variation
- A6 Increased Setbacks
- A7 Upper Floor Stepbacks

Photo Credit: Shears, Adkins, Rockmore Architects (SA+R)
The following pages provide specific recommendations for combining building articulation methods. Suggested methods vary based on the specific design issue to be addressed and the dimensions and circumstances of a project. Recommendations are provided for the following objectives:

- Reflecting traditional scale at the street
- Addressing a sensitive edge (low-scaled residential, historic building)
- Maintaining a public view corridor/providing solar access
- Provide solar access
- Creating outdoor space

BD.27. Use a combination of “façade articulation” and “mass variation” methods shown in Figure 14 to reduce the perceived and/or actual mass and scale of a building.
Reflecting Traditional Scale at the Street

Intent: Reflect traditional building widths and heights along a public street.

Width

Long Walls: Combine at least (3) three of the following:
- A1, A2, A3, A4, A5, A6

Short Walls: Combine at least (2) two of the following:
- A1, A2, A3, A4, A5, A6

*Criteria for determining a Long Wall and Short Wall are shown in the table.

Height

Long Walls: Combine at least (3) three of the following:
- A1, A2, A3, A5, A7 (Use A5 or A7 for at least 50% of the wall length)

Short Walls: Combine at least (2) two of the following:
- A1, A2, A3, A5, A7

*Criteria for determining a Long Wall and Short Wall are shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Collegetown Core</th>
<th>Residential Transition</th>
<th>Neighborhood Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Wall</td>
<td>> 50 ft.</td>
<td>> 40 ft.</td>
<td>NA</td>
</tr>
<tr>
<td>Short Wall</td>
<td>< 50 ft.</td>
<td>< 40 ft.</td>
<td>NA</td>
</tr>
</tbody>
</table>
Addressing a Sensitive Edge

Intent: Transition in scale to prevent a looming wall. Sensitively respond to building placement patterns of a historic district or resource. Sensitive edges include low-scale residential properties or historic properties.

Low Scale Residential Neighbor

Height Transition: If a development is taller than two stories and shares a side lot line with a low-scaled residential property, articulate at least 50% of the building wall along the shared lot line. This can occur at any point on the wall. Use one or combine the following:
• A6, A7 (a minimum of 10 feet as illustrated)

The example building shown in plan view to the right uses A6. Increased Building Setback, and provides it at the rear. The cross sections show both options, but they can be combined on a single building. If the new development is uphill from the low scale residential neighbor, consider increasing the overall setback by 5 feet.

*Suggested dimensions are shown in the diagram to the right.
Low Scale Historic Neighbor

If the Historic Low Scale Residential Neighbor described above is a historic resource or is located in a locally designated historic district, use the following articulation methods in addition to those suggested above.

Height Transition: If a development is taller than two stories and shares a side lot line with a low-scaled residential property, articulate at least 50% of the building wall. This should occur at the front of the lot. Use one or combine the following:

- A6, A7 (a minimum of 10 feet as illustrated)

Front Setback Compatibility: If a development is adjacent to a historic resource, provide an increased setback from the front lot line of the historic resource to align with its front wall. Use the following:

- A6 (a minimum of 8 feet as illustrated; provide for a minimum of 10 feet from the required setback line)
Maintaining Public Views/Increasing Solar Access

Intent: Maintain or create views down a public street, to the sky or to a natural feature. Maximize sunlight to the public realm or a private outdoor space, either at the street level or on an upper level.

Long Walls: Use one or more of the following on at least 50% of a wall:
• A5, A6, A7

Short Walls: Use one or more of the following if feasible:
• A5, A6, A7

*Criteria for determining a Long Wall and Short Wall are shown in the table.

<table>
<thead>
<tr>
<th></th>
<th>Collegetown Core</th>
<th>Residential Transition</th>
<th>Neighborhood Periphery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Wall =</td>
<td>> 50 ft.</td>
<td>> 40 ft.</td>
<td>NA</td>
</tr>
<tr>
<td>Short Wall =</td>
<td>< 50 ft.</td>
<td>< 40 ft.</td>
<td>NA</td>
</tr>
</tbody>
</table>

Creating Outdoor Space

Intent: Create an opportunity for private outdoor space for tenants, customers or other building users on a ground floor, upper floor or rooftop.

At the Ground Level: Use A6.

On an Upper Floor or Rooftop: Use A5 or A7

*Criteria for determining a Long Wall and Short Wall are shown in the table.
Interior Façade Articulation

A secondary façade typically refers to a wall that does not face a prominent public space, like a street or public plaza. Secondary façades include interior side walls and rear walls. Priority conditions include:

- Where an interior façade is set back from an interior lot line.
- A façade facing a parking area or internal circulation component or alley.

Use minimal articulation methods to express human scale on an interior façade. Additional articulation is encouraged but not required.
SIGN DESIGN

Signs are important to businesses in Collegetown. Their design should balance functional requirements with objectives for character, design and compatibility. Orderly sign location and design can make fewer and smaller signs more effective. The design guidelines promote the use of signs which are aesthetically pleasing, of appropriate scale, and integrated with surrounding buildings in order to meet the community’s desire for quality development. All signs throughout the city are subject to the regulations in the Sign Ordinance of the City of Ithaca, which provides the definitions and legal framework for a comprehensive and balanced system of signage.
General Sign Design Guidelines

Signs should contribute to a cohesive character of the Collegetown Area. All signage should also be compatible with the materials, colors and details of the building. Its content should be visually interesting and clearly legible. Illumination sources should be shielded to minimize glare and light pollution. A sign should remain subordinate to a primary building.

S.1. **Design a sign to be compatible with the primary building.**
- Use materials, colors and details that are compatible with those used for the building.

S.2. **Design and locate a sign to be subordinate to a site and primary building.**
- Design a sign to be simple in character.
- Design the content of a sign to be clearly legible. Traditional block and curvilinear styles that are easy to read are preferred.
- Limit the number of colors used on a sign. In general, no more than three colors should be used, although accent colors and additional colors for illustrations may be considered.
- Locate and design a sign to emphasize rather than overshadow building features.
Lighting

S.3. **Shield a sign illumination source to minimize glare and light pollution.**
 - Use a compatible shielded light source to illuminate a sign.
 - Direct lighting towards a sign from an external, shielded lamp.
 - Do not overpower the building or street edge with sign lighting.
 - If halo lighting is used to accentuate a sign or building, locate the light source so that it is not visible.
 - If internal illumination is used, design it to be subordinate to the overall building composition.
 - If internal illumination is used, use a system that only backlights the individual characters of sign text.
 - Avoid internal illumination of an entire sign panel.

Materials

S.4. **Use a sign material that is compatible with the architectural character and materials of the building.**

S.5. **Use permanent, durable materials for a sign that reflect the Collegetown context.**

S.6. **Use a permanent, durable material for a sign.**
Guidelines for Specific Sign Types

The table below includes additional guidelines applicable to specific sign types. They shall be used in concert with the general signage guidelines above. The definitions included below are established in the City of Ithaca Sign Ordinance.

Wall Signs

A sign fastened, painted or otherwise erected on the wall of a building so that the wall becomes the sign’s supporting structure and wholly or partially forms its background.

S.7. Locate and design a wall sign to promote design compatibility among buildings.
- Place a wall sign to align with other signs on nearby buildings.
- Design a wall sign to minimize the depth of a sign panel or letters.
- Design a wall sign to fit within, rather than forward of, the fascia or other architectural details of a building.

Window Signs

A permanent sign affixed to a window surface or in front of or behind a window in such a manner that the window acts as its frame or background.

S.8. Design a window sign to preserve transparency at the sidewalk edge.
- Use a minimal amount of opaque material on a window sign.
- Scale a window sign so that it only covers a modest amount of a glass window panel.

Projecting Signs

Any sign that projects from the exterior of any building.

S.9. Locate and design a projecting sign to relate to building entries and convey visual interest.
- Locate a small blade sign near the business entrance, just above or to the side of the door.
- Mount a larger blade sign higher on the building, centered on the façade or positioned at the corner.
- Design a bracket for a projecting sign to complement the sign composition.
Awning Signs

A sign that is painted, printed, or stenciled onto the surface of an awning.

S.10. Design printing on an awning to be subordinate to the awning.
- Scale a printing on an awning sign to only cover a modest amount of the awning material.
- Use a color that contrasts well with the color of the awning.

Canopy Sign

A sign that is painted, printed, or stenciled onto the surface of a canopy.

S.11. Design signage to fit within and be subordinate to the architectural canopy element.
- Use lettering or graphics that fit within the canopy structure.
- Use colors that contrast with a canopy material.

Monument Sign

A sign or signs mounted, painted on or fastened to a freestanding wall, pier or other sign structure, of which any horizontal dimension of a structural member exceeds 18 inches between two feet and eight feet above grade level.

S.12. Locate a monument sign to integrate with a site design.
- Ensure that a monument sign does not encroach on or interrupt a prominent site feature or internal walkway.

S.13. Scale a monument sign to be of a size and height that expresses human scale.
- Use a low profile monument sign that is easily readable, but does not block views to a building.
This chapter provides special guidelines for each of the three Character Areas defined in Chapter 1. It discusses areas of emphasis for specific topic areas. The guidelines and content shall be used in addition to the general guidelines provided in Chapters 3, 4 and 5. Collegetown Character Areas are shown in Figure 16.

The Character Areas are consistent with the CAFD, but in some cases a single Character Area covers multiple CAFD districts.
FIGURE 16: Collegetown Character Areas.
Collegetown Core
The Collegetown Core is centered on the intersection of College Avenue and Dryden Road. It is an epicenter of activity that is densely developed and highly urban in character. Buildings are often mixed-use with ground floor commercial and upper floor office or residential and are built close to or at the sidewalk edge. Heights range from 1-6 stories, but traditional building heights are about 4 stories. Primary building materials include brick and cement masonry unit (CMU). Ground floors along the street are usually transparent with storefronts or windows.

Building Orientation and Placement (MU-1)
The MU-1 Form District includes parcels that front College Avenue between Catherine Street and Bool Street. The CAFD allow single use or mixed use commercial, residential and institutional buildings. Buildings in the MU-1 district should orient a primary façade to College Avenue. They should be placed near the lot line along College Avenue in the existing range of setbacks on the block. On the west side of College Avenue, buildings should generally align with the minimal setback range established by existing buildings on the block face. On the east side of College Avenue, buildings should be set back further. Existing setbacks are varied on the east side of College Avenue, so more flexibility should be provided for building placement on this block face. Greater setbacks may be appropriate in order to provide an outdoor space, provided it includes landscaping or other design elements that define the street edge.

CC.1. Place a building within the range of setbacks established by buildings on the block face.

Building Orientation and Placement (MU-2)
The MU-2 Form District includes properties that front the most pedestrian-oriented, streets, including College Avenue, Dryden Road and Eddy Street. Site and building designs should always prioritize these streets. Buildings should establish a strong and active building edge along the street to provide a sense of enclosure to the street. Greater setbacks may be appropriate in order to provide an outdoor space for landscaping, special corner treatments or other design elements, however these elements should still define the street space.

CC.2. Place a building as close to the property line as possible along College Avenue, Dryden Road or Eddy Street, consistent with the minimum and maximum setbacks established in the CAFD. An additional setback may be appropriate to create an open space, plaza or widened sidewalk.
Buildings should be placed as close to the back of the sidewalk edge as possible.
Corner Design (MU-2)

Key corners in the Collegetown Core are located at College Avenue/Dryden Road, Drydren Road/Eddy Street and College Avenue/Oak Avenue. Building corners in the MU-2 district should provide a special design element to highlight these focal points.

CC.3. Provide a specialized corner element to accentuate a corner in the MU-2 district.

Appropriate treatments include:

- Chamfered corner (as described in the CAFD)
- Curved corner coordinated with the street corner.
- Increased setback from one or both street frontages with a corner plaza.
- An enhanced linear outdoor space along one or both street frontages.
- Covered corner plaza that allows high visibility to the entry.

![Curved Corner](image)
![Corner Plaza](image)
![Chamfered Corner](image)

![Linear Outdoor Space](image)
![Covered Corner Plaza](image)
Residential Transition
The Residential Transition is a densely developed residential area that provides a scale transition between the Collegetown Core and Neighborhood Periphery. Building types include contemporary apartment buildings and traditional residential buildings that have been converted to apartments. Buildings are more substantially set back from the street than in the Collegetown Core and landscaping is more prevalent.

Building Orientation and Placement
The Residential Transition character includes parcels that front on several primary streets, including Catherine Street, Oak Avenue, Summit Avenue, Dryden Road, College Avenue and Linden Avenue. Buildings should establish a strong edge along these streets. Buildings should orient a primary facade to these streets. The typical front setback or range of setbacks varies from block to block. Buildings should be placed to create a consistent pattern of front building walls. Buildings in the Residential Transition area should be placed to align a primary facade within the range of setbacks on a block face, as shown in Figure 17.

RT.1. Place a building within the range of setbacks established by buildings on the block face.
- If the range of setbacks on a block is very consistent, match the setback pattern.
- If the range of setbacks varies from building to building, place the building to fall within the range of setbacks on the block.

FIGURE 17: Building Placement in the Residential Transition and Neighborhood Periphery.

Building Placement in the Residential Transition (and Neighborhood Periphery)

Consistent Setback

Varied Setback

On some blocks, front facades are in general alignment, and front yards have consistent depths. In this context, a new structure should be built at the same front yard setback as the existing structures on the block as illustrated above.

On some blocks, the traditional front yard setback pattern is varied, and additional flexibility is appropriate in the placement of a new structure. In this context, a new structure should be built within the established range of front yard setbacks as illustrated by the block above.
Front Yard Setback Character
Front yards in the Residential Transition strongly influence character. In most cases, a modestly sized front yard is provided and landscaped with a combination of lawn areas, trees, planted areas and other landscape features. Projects should continue this character-defining pattern.

RT.2. Provide landscaping in the front yard setback in the Residential Transition character area. Appropriate options include:
- Canopy trees
- Lawns
- Planting strips/flower beds
- Other treatments that are compatible with a traditional lawn

RT.3. Minimize a paved area within a front setback.
- Minimize the curb cut to the area required for auto ingress/egress.

Porch, Stoop and Recessed Entry Design
Porches, stoops or recessed entries are required under the CAFD in the Residential Transition. These elements are critically important in defining street character. They provide a human scale element adjacent to the public street and establish a visual and physical connection to the public realm. Porches should be visually coordinated and compatible with the overall building design. They should also be designed to create visual continuity along the street.

RT.4. Design a porch, stoop or recessed entry to be architecturally consistent with the overall design and detailing of the primary structure.
- Use similar materials and detailing.
- Design a porch roof to be consistent in pitch and material with other roof elements on the structure.
- Do not leave a porch, stoop or recessed entry material unfinished.

RT.5. Design a porch, stoop or recessed entry to be compatible with its context.
- Design a front porch or stoop that is similar in scale and location to traditional buildings on a block.
- Maintain the alignment of porches and stoops (canopies, awnings, porch height, eave height and foundation height) along the street.
Neighborhood Periphery

The Neighborhood Periphery is the least dense of the three Character Areas. Traditional single-family homes dominate. Setbacks from the street are the most substantial of the Character Areas, and are generally landscaped. Many houses have been converted to apartments, but to a lesser extent.

Building Orientation and Placement

Primary streets in the Neighborhood Periphery include Dryden Road, Oak Avenue, Linden Avenue, College Avenue and Mitchell Road.

Buildings should establish a rhythm of primary façades, entry doors and porches and buildings along these streets. Buildings should orient a primary façade to the street. Buildings should also be placed consistently along a street within a single block face. The typical setback or setback range varies from block to block within the Neighborhood Periphery, so this should be considered on a case-by-case basis. Where variety exists, align a primary façade within the range of setbacks on a block face.

NP.1. Place a building within the range of front setbacks established by buildings on the block face, as shown in Figure 17.

- If the range of setbacks on a block is very consistent, match the setback pattern.
- If the range of setbacks varies from building to building, place the building to fall within the range of setbacks on the block.

NP.2. Provide a side setback that is similar to the range of side setbacks provided along a block face.
Front Yard Setback Character
Front yards in the Neighborhood Periphery strongly influence character. In most cases, a modestly sized front yard is provided and landscaped with a combination of lawn areas, trees, planted areas and other landscape features. Projects should continue this character-defining pattern.

NP.3. Provide landscaping in the front yard setback in the Residential Transition character area. Appropriate options include:
- Canopy trees
- Lawns
- Planting strips/flower beds
- Other treatments that are compatible with a traditional lawn

NP.4. Minimize a paved area within a front setback.
- Minimize the curb cut to the area required for auto ingress/egress.

Porch Design
Front porches are required under the CAFD in the Neighborhood Periphery. They are critically important in defining street character. Porches help to express a human scale and establish a visual and physical connection to the public realm. Porches should be visually coordinated and compatible with the overall building design. They should also be designed to create visual continuity along the street.

NP.5. Design a porch to be architecturally consistent with the overall design and detailing of the primary structure.
- Use similar materials and detailing.
- Design a porch roof to be consistent in pitch and material with other roof elements on the structure.
- Do not leave a porch, stoop or recessed entry material unfinished.

NP.6. Design a porch to be compatible with its traditional context.
- Provide a front porch that is similar in scale and location to traditional buildings in context.
- Where they occur, maintain the alignment of porches (porch height, eave height and foundation height) along the street.